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Abstract

Let 2" be the collection of all polynomials of degree at most n with real coefficients that
have at most m distinct complex zeros. We prove that

P(x)|<32-8" P
max |P'(x)| 7 max, |P(x)]

for every Pe 2. This is far away from what we expect. We conjecture that the Markov factor
32 - 8"n above may be replaced by cmn with an absolute constant ¢>0. We are not able to
prove this conjecture at the moment. However, we think that our result above gives the best-
known Markov-type inequality for 2’ on a finite interval when m<clogn.
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1. Introduction, notation, new result

Markov’s inequality asserts that

max |P'(x)|<2n® max |P(x)|
xe(0,1] xe[0,1]

for all polynomials of degree at most n with real coefficients. There is a huge

literature about Markov-type inequalities for constrained polynomials. In particular,
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several essentially sharp improvements are known for various classes of polynomials
with restricted zeros. Here we just refer to [1], and the references therein.

Let 2! be the collection of all polynomials of degree at most n with real
coefficients that have at most m distinct complex zeros. We prove the following.

Theorem. We have

max |P'(x)]<32-8"n max |P(x)|
xe(0,1] xe(0,1]

for every Pe?).

This is far away from what we expect. We conjecture that the Markov factor
32 - 8"n above may be replaced by cmn with an absolute constant ¢>0. We are not
able to prove this conjecture at the moment. However, we think that our result above
gives the best-known Markov-type inequality for 2, on a finite interval when
m<clogn.

2. Proof

It is easy to see by Rouche’s Theorem that 2! is closed in the maximum norm on
[0,1], and hence in any norm. Therefore, it is easy to argue that there is a P*€ 2}
with minimal Z; norm on [0, 1] such that

[P(0)] [P'(0)]

= SUPpegyn ———— .
maxecon [P ()] PP max, oy [P(x)]

Lemma 1. There is a polynomial T € 2™ of the form
T(x) = Q(x)(x —a),
where Qe P | has all its zeros in [0,1], aeR, and

PO [T'(0)]

max,ec o, |P*(x)] max |T(x)|

Proof. Assume that zpe C\R is a zero of P* with multiplicity k. Then

x? k
Px)=Px)|1-¢6—F+——
&) ( )( (X—Zo)(X—fo))
with a sufficiently small ¢>0 is in 2’ and it contradicts the defining properties
of P*. So each of the zeros of P* is real. Now let P* = RS where all the zeros
of R are in [0,1], while S(0)>0 and all the zeros of S are in R\[0, 1]. We may

assume that S is not identically constant, otherwise T = P*e 2" with Qe Z?™ ,
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defined by

o) =1

X —d

is a suitable choice, where x — « is any linear factor of P*. It is easy to see that .S can
be written as

d
Sx) =Y A (1-x)"7, 420, j=0,1,....d,
j=0

where d > 1 is the degree of S. Now let

1
T(x)=R(x) Y A/ (1—x)"7.
j=0

Then T is of the form
T(x) = Q(x)(x —a),

where Qe 2" | has all its zeros in [0, 1], ae R, and

PO [T'(0)]

max,c o, |P*(x)] max |T(x)/

and the proof is finished. [

For the sake of brevity let

[P'(0)]

n<M(n,m) =supp —————,
) = S0 o) 1POY)

where the supremum is taken for all Pe 2’ having all their zeros in [0, 1].

Lemma 2. Let P* and T(x) = Q(x)(x — a) be as in Lemma 1. Suppose a<0 or a>?2.
Then

max |Q(x)|<4M(n,m) max |T(x)|.
xe(0,1] xe[0,1]

Proof. Let he[0, 1] be a point for which
|Q(b)] = max [Q(x)].
xe[0,1]

Case 1: be[1/2,1]. In this case

T ,
max 10(x)] = 0] = [ <ATB) <2 max |T(2)
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Case 2: be0,1/2]. In this case Q = UV, where U2 has all its zeros in [b, 1],
and V'eZ) has all its zeros in R\[b, 1]. It is easy to see that 7" can be written as

d
ZB,xfb)’lfx Y, Bi=0, j=0,1,...,d,
Jj=0

where d is the degree of V. Now let
W (x) = U(x)By(1 — x)°.
Then
(W (b)| = |[(UV) ()] = |Q(b)| = max [Q(x)] (1)

xelb,1]
and
(W(x)l<|Qx)],  xelb, 1]. (2)
Also W e has all its zeros in [b, 1]. Let n>b be the smallest point for which
(Wil =5 max ()]

Then |W'(x)] is decreasmg on [b,n], and it follows by a linear transformation that

max W) <2M(n.m) max [W(). G)

Combining the above by the mean value theorem, we obtain
b max W) =W (D) = W)l = (1~ B)W'(0)

< (1= b)) < (1 — D)2 M (n.m) mas. |W ()]

whence
(n—b)=(4M(n,m))"".
This, together with (1)—(3), yields

|7
max 0(9)] <2Q()| =1 " <4M(n.m) max |T(x)]

and the proof is finished. [

Lemma 3. Let P* be as in Lemma 1. Then there exists a polynomial U eg’f“ having
all its zeros in [0, 1] such that
/ i«
lvoF 1 [P0

max,c ) |U(x)|” 7 max, |P(x)|

Proof. Let T(x) = Q(x)(x —a) as in Lemma 1. We distinguish three cases.
Case 1: a€0,1]. In this case U(x) = T'(x) is a suitable choice.
Case 2: ae(l1,2]. In this case U(x) = T(ax) is a suitable choice.
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Case 3: a<0 or a>2. Then we have
T'(0) = —aQ'(0) + 0(0).

Combining this with Lemma 2 we obtain

|P*(0)] < _ T < laQ'(0)]
max,e o, |P*(x)] max IT(x)| max |0(x)(x — a)|
10(0)]
max, |0(x)(x — a)
laQ'(0)| 10(0)]
N max 0(X)| * (4M(n,m))~ lxr?[%’h' (x)]

<2M(n—1,m)+4M(n,m+ 1)<6M(n,m).

This means that there is a polynomial U e@ﬁ’“ having all its zeros in [0, 1] such that

|U'(0)] |P*(0)]
_— > (1)t O
maxcon (00 s 12T
We introduce
|P'(0)]

<M (n,m) = max,epo.1) |[P()]
n (n,m) = supp max,co,1 [P(x)]

where the supremum is taken for all Pe 2/ having all their zeros in [0, 1] for which
P(0)| = P(x)|.
|P(0)] max | ()]

Lemma 4. We have M(n,m+ 1) = M*(n,m+ 1).

Proof. Since M(n,m+ 1)=M*(n,m+ 1) is trivial, we need to see only M (n,m +
1)< M*(n,m+ 1). To this end take a Pe 2" and choose ae(—0,0] so that

P(a)| = P(x)|.
| P(o)| ;g[%jg]l ()]

Now let
U(x) = P((1 —a)x +a).
Then Ue 2™ has all its zeros in [0, 1] and

[U0)] = |P(o)] = max [P(x)| = max [P(x)| = max |U(x)|,
xe[0,1] xelo,l] xe[0,1]

while, since |P'(x)| is decreasing on (— oo, 0], we have
[U'(0)] = (1 = o) |P'(a)| = (1 — )| P'(0)]=|P'(0)].
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Therefore
|P'(0)] . U

maxye i) [P(¥)]~ max [U(x)[
x€el0,1]

O

From Lemmas 3 and 4 we can draw the following conclusion.

Lemma 5. We have
|P'(0)]

— 0 <TM*(n,m+1).
marsepy (PO M (mm D)

SUPpe

Lemma 6. We have M*(n,m)<28"n.

Proof. Suppose that PeZ” has all its zeros in [0, 1], and
|P(0)| = max |P(x)].
xe(0,1]

Let F(x) = |P(x)|1/“’7 where d(<n) is the degree of P. Then
[F(0)] = max [F(x)|
xe[0,1]
Let
m
F(x) =T lx =i,
i=1
where

O<xi<--<xp<l, O<w, i=12..m Y a=1

We show that

ﬁ<2 . Smfi
Xl'\
for each i = 1,2, ...,m. To see this let

Ay ={1,2, ..., },
Ay = {il + 1,0 + 2, ...,iz},

A# = {l'#,l + l,l'u,1 + 2, ...,l'# = m},

be the sets of indices for which
Xit1
Xi

<8 whenever i and i+ 1 are in the same 4,,

X'+1 . . .
" >8 whenever i and i+ | are not in the same A4,.
Xi
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Inequality (5) is clear for any i€ A, since (4) implies that

OCi 8}717!
—<—<
Xi Xi  Xm

< 2. 8m—i.

We continue by induction. Assume that (5) holds for any ie 4, U 4,41 U---UA,. We
prove that it holds for any je A, ;. Since

H |x — x;|"<F(0) = H |x: |, xel0,1],
i=1 i=1

we have
m x
Z ailogl——1/<0, xe[0,1].
- X
i=1
Let jeA,_1 be arbitrary and x* :=4x; ,. For ked,uAd,,;U---UA4, we have

xX*/xx<1/2, so

log(l - x—) > —2(log2) - .
X Xk

Thus

(10g3)lia,-<2(1og2).x* Xm: i

b
=1 i1 Vi

ocj<2(log 2) x* oci<2(log 2)

< 4.8 (24284 o 2.8 hT]
x;  log3 x; . 4
. i=iy_

S

x;  log3

1+1

from which

o i
L. 8m
Xj

follows immediately. The proof of (5) is now complete for all i =1,2,...,m. The

lemma follows by:
[P'O)] _ ,1E(0)]
[P(0)] [F(0)]

2
<d-8". O
7

The following is a consequence of Lemmas 5 and 6.

Corollary 7. We have

|P'(0)|<2-8"'n max |P(x)|.
xe[0,1]

for every Pe ..
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Proof of the Theorem. We need to prove that
[P'(y)|<4-8""n max. |P(x)|
xe|0,

for every Pe#) and ye|0,1]. However, it follows from Corollary 7 by a simple
linear transformation that

PO)|<2-2-8""n max [P <4-8"n max |P(o). ye[0.1/2).

and

|P'(y)|<2-2-8""'n max |P(x)|<4-8""'n max |P(x)|, ye[l/2,1].
xe[0,y] xe[0,1]

This finishes the proof. [
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