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Abstract

Let Pm
n be the collection of all polynomials of degree at most n with real coefficients that

have at most m distinct complex zeros. We prove that

max
xA½0;1�

jP0ðxÞjp32 � 8mn max
xA½0;1�

jPðxÞj

for every PAPm
n : This is far away from what we expect. We conjecture that the Markov factor

32 � 8mn above may be replaced by cmn with an absolute constant c40: We are not able to

prove this conjecture at the moment. However, we think that our result above gives the best-

known Markov-type inequality for Pm
n on a finite interval when mpc log n:

r 2003 Elsevier Science (USA). All rights reserved.
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1. Introduction, notation, new result

Markov’s inequality asserts that

max
xA½0;1�

jP0ðxÞjp2n2 max
xA½0;1�

jPðxÞj

for all polynomials of degree at most n with real coefficients. There is a huge
literature about Markov-type inequalities for constrained polynomials. In particular,
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several essentially sharp improvements are known for various classes of polynomials
with restricted zeros. Here we just refer to [1], and the references therein.

Let Pm
n be the collection of all polynomials of degree at most n with real

coefficients that have at most m distinct complex zeros. We prove the following.

Theorem. We have

max
xA½0;1�

jP0ðxÞjp32 � 8mn max
xA½0;1�

jPðxÞj

for every PAPm
n :

This is far away from what we expect. We conjecture that the Markov factor
32 � 8mn above may be replaced by cmn with an absolute constant c40: We are not
able to prove this conjecture at the moment. However, we think that our result above
gives the best-known Markov-type inequality for Pm

n on a finite interval when

mpc log n:

2. Proof

It is easy to see by Rouche’s Theorem that Pm
n is closed in the maximum norm on

½0; 1�; and hence in any norm. Therefore, it is easy to argue that there is a P�APm
n

with minimal L1 norm on ½0; 1� such that

jP�0 ð0Þj
maxxA½0;1� jP�ðxÞj ¼ supPAPm

n

jP0ð0Þj
maxxA½0;1� jPðxÞj

:

Lemma 1. There is a polynomial TAPmþ1
n of the form

TðxÞ ¼ QðxÞðx � aÞ;

where QAPm
n�1 has all its zeros in ½0; 1�; aAR; and

jP�0 ð0Þj
maxxA½0;1� jP�ðxÞjp

jT 0ð0Þj
max

xA½0;1�
jTðxÞj:

Proof. Assume that z0AC\R is a zero of P� with multiplicity k: Then

P�
e ðxÞ :¼ P�ðxÞ 1 � e

x2

ðx � z0Þðx � %z0Þ

� �k

with a sufficiently small e40 is in Pm
n and it contradicts the defining properties

of P�: So each of the zeros of P� is real. Now let P� ¼ RS where all the zeros
of R are in ½0; 1�; while Sð0Þ40 and all the zeros of S are in R\½0; 1�: We may

assume that S is not identically constant, otherwise T :¼ P�APmþ1
n with QAPm

n�1
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defined by

QðxÞ :¼ P�ðxÞ
x � a

is a suitable choice, where x � a is any linear factor of P�: It is easy to see that S can
be written as

SðxÞ :¼
Xd

j¼0

Ajx
jð1 � xÞd�j; AjX0; j ¼ 0; 1;y; d;

where dX1 is the degree of S: Now let

TðxÞ ¼ RðxÞ
X1

j¼0

Ajx
jð1 � xÞd�j :

Then T is of the form

TðxÞ ¼ QðxÞðx � aÞ;

where QAPm
n�1 has all its zeros in ½0; 1�; aAR; and

jP�0 ð0Þj
maxxA½0;1� jP�ðxÞjp

jT 0ð0Þj
max

xA½0;1�
jTðxÞj;

and the proof is finished. &

For the sake of brevity let

npMðn;mÞ :¼ supP

jP0ð0Þj
maxxA½0;1� jPðxÞj

;

where the supremum is taken for all PAPm
n having all their zeros in ½0; 1�:

Lemma 2. Let P� and TðxÞ ¼ QðxÞðx � aÞ be as in Lemma 1. Suppose ao0 or a42:
Then

max
xA½0;1�

jQðxÞjp4Mðn;mÞ max
xA½0;1�

jTðxÞj:

Proof. Let bA½0; 1� be a point for which

jQðbÞj ¼ max
xA½0;1�

jQðxÞj:

Case 1: bA½1=2; 1�: In this case

max
xA½0;1�

jQðxÞj ¼ jQðbÞj ¼ jTðbÞj
jb � ajp2jTðbÞjp2 max

xA½0;1�
jTðxÞj:
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Case 2: bA½0; 1=2�: In this case Q ¼ UV ; where UAPm
n has all its zeros in ½b; 1�;

and VAPm
n has all its zeros in R\½b; 1�: It is easy to see that V can be written as

VðxÞ :¼
Xd

j¼0

Bjðx � bÞjð1 � xÞd�j; BjX0; j ¼ 0; 1;y; d;

where d is the degree of V : Now let

WðxÞ ¼ UðxÞB0ð1 � xÞd :

Then

jWðbÞj ¼ jðUVÞðbÞj ¼ jQðbÞj ¼ max
xA½b;1�

jQðxÞj ð1Þ

and

jWðxÞjpjQðxÞj; xA½b; 1�: ð2Þ
Also WAPm

n has all its zeros in ½b; 1�: Let Z4b be the smallest point for which

jWðZÞj ¼ 1
2

max
xA½b;1�

jWðxÞj:

Then jW 0ðxÞj is decreasing on ½b; Z�; and it follows by a linear transformation that

jW 0ðbÞjpMðn;mÞ
1 � b

max
xA½b;1�

jWðxÞjp2Mðn;mÞ max
xA½b;1�

jWðxÞj: ð3Þ

Combining the above by the mean value theorem, we obtain
1
2

max
xA½b;1�

jWðxÞj ¼ jWðbÞ � WðZÞj ¼ ðZ� bÞjW 0ðxÞj

p ðZ� bÞjW 0ðbÞjpðZ� bÞ2Mðn;mÞ max
xA½b;1�

jWðxÞj;

whence

ðZ� bÞXð4Mðn;mÞÞ�1:

This, together with (1)–(3), yields

max
xA½0;1�

jQðxÞjp2jQðZÞj ¼ jTðZÞj
Z� a

p4Mðn;mÞ max
xA½0;1�

jTðxÞj;

and the proof is finished. &

Lemma 3. Let P� be as in Lemma 1. Then there exists a polynomial UAPmþ1
n having

all its zeros in ½0; 1� such that

jU 0ð0Þj
maxxA½0;1� jUðxÞjX

1

7

jP�0 ð0Þj
max

xA½0;1�
jP�ðxÞj:

Proof. Let TðxÞ ¼ QðxÞðx � aÞ as in Lemma 1. We distinguish three cases.
Case 1: aA½0; 1�: In this case UðxÞ ¼ TðxÞ is a suitable choice.
Case 2: aA½1; 2�: In this case UðxÞ ¼ TðaxÞ is a suitable choice.
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Case 3: ao0 or a42: Then we have

T 0ð0Þ ¼ �aQ0ð0Þ þ Qð0Þ:

Combining this with Lemma 2 we obtain

jP�0 ð0Þj
maxxA½0;1� jP�ðxÞjp

jT 0ð0Þj
max

xA½0;1�
jTðxÞjp

jaQ0ð0Þj
max

xA½0;1�
jQðxÞðx � aÞj

þ jQð0Þj
max

xA½0;1�
jQðxÞðx � aÞj

p
jaQ0ð0Þj

ja
2
j max

xA½0;1�
jQðxÞj þ

jQð0Þj
ð4Mðn;mÞÞ�1 max

xA½0;1�
jQðxÞj

p 2Mðn � 1;mÞ þ 4Mðn;m þ 1Þp6Mðn;mÞ:

This means that there is a polynomial UAPmþ1
n having all its zeros in ½0; 1� such that

jU 0ð0Þj
maxxA½0;1� jUðxÞjXð1=7Þ jP�0 ð0Þj

max
xA½0;1�

jP�ðxÞj: &

We introduce

npM�ðn;mÞ :¼ supP

jP0ð0Þj
maxxA½0;1� jPðxÞj

;

where the supremum is taken for all PAPm
n having all their zeros in ½0; 1� for which

jPð0Þj ¼ max
xA½0;1�

jPðxÞj:

Lemma 4. We have Mðn;m þ 1Þ ¼ M�ðn;m þ 1Þ:

Proof. Since Mðn;m þ 1ÞXM�ðn;m þ 1Þ is trivial, we need to see only Mðn;m þ
1ÞpM�ðn;m þ 1Þ: To this end take a PAPmþ1

n and choose aAð�N; 0� so that

jPðaÞj ¼ max
xA½0;1�

jPðxÞj:

Now let

UðxÞ :¼ Pðð1 � aÞx þ aÞ:

Then UAPmþ1
n has all its zeros in ½0; 1� and

jUð0Þj ¼ jPðaÞj ¼ max
xA½0;1�

jPðxÞj ¼ max
xA½a;1�

jPðxÞj ¼ max
xA½0;1�

jUðxÞj;

while, since jP0ðxÞj is decreasing on ð�N; 0�; we have

jU 0ð0Þj ¼ ð1 � aÞjP0ðaÞjXð1 � aÞjP0ð0ÞjXjP0ð0Þj:
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Therefore

jP0ð0Þj
maxxA½0;1� jPðxÞj

p
jU 0ð0Þj

max
xA½0;1�

jUðxÞj: &

From Lemmas 3 and 4 we can draw the following conclusion.

Lemma 5. We have

supPAPm
n

jP0ð0Þj
maxxA½0;1� jPðxÞj

p7M�ðn;m þ 1Þ:

Lemma 6. We have M�ðn;mÞp2
7
8mn:

Proof. Suppose that PAPm
n has all its zeros in ½0; 1�; and

jPð0Þj ¼ max
xA½0;1�

jPðxÞj:

Let FðxÞ :¼ jPðxÞj1=d ; where dðpnÞ is the degree of P: Then

jFð0Þj ¼ max
xA½0;1�

jFðxÞj: ð4Þ

Let

FðxÞ ¼
Ym

i¼1

jx � xijai ;

where

0ox1o?oxmo1; 0oai; i ¼ 1; 2;y;m;
Xm

i¼1

ai ¼ 1:

We show that
ai

xi

p2 � 8m�i ð5Þ

for each i ¼ 1; 2;y;m: To see this let

A1 :¼ f1; 2;y; i1g;

A2 :¼ fi1 þ 1; i1 þ 2;y; i2g;

^

Am :¼ fim�1 þ 1; im�1 þ 2;y; im :¼ mg;
be the sets of indices for which

xiþ1

xi

p8 whenever i and i þ 1 are in the same An;

xiþ1

xi

48 whenever i and i þ 1 are not in the same An:

D. Benko, T. Erd!elyi / Journal of Approximation Theory 122 (2003) 241–248246



Inequality (5) is clear for any iAAm; since (4) implies that

ai

xi

p
1

xi

p
8m�i

xm

p2 � 8m�i:

We continue by induction. Assume that (5) holds for any iAAn,Anþ1,?,Am: We

prove that it holds for any jAAn�1: Since

Ym

i¼1

jx � xijaipFð0Þ ¼
Ym

i¼1

jxijai ; xA½0; 1�;

we have

Xm

i¼1

ai log
x

xi

� 1

����
����p0; xA½0; 1�:

Let jAAn�1 be arbitrary and x� :¼ 4xin�1
: For kAAn,Anþ1,?,Am we have

x�=xkp1=2; so

log 1 � x�

xk

� �
X� 2ðlog 2Þ � x�

xk

:

Thus

ðlog 3Þ
Xin�1

i¼1

aip2ðlog 2Þ � x�
Xm

i¼in�1þ1

ai

xi

;

aj

xj

p
2ðlog 2Þ
log 3

x�

xj

Xm

i¼in�1þ1

ai

xi

p
2ðlog 2Þ
log 3

4 � 8in�1�jð2 þ 2 � 8 þ?þ 2 � 8m�in�1�1Þ;

from which

aj

xj

p2 � 8m�j

follows immediately. The proof of (5) is now complete for all i ¼ 1; 2;y;m: The
lemma follows by:

jP0ð0Þj
jPð0Þj ¼ d

jF 0ð0Þj
jFð0Þjpd

2

7
8m: &

The following is a consequence of Lemmas 5 and 6.

Corollary 7. We have

jP0ð0Þjp2 � 8mþ1n max
xA½0;1�

jPðxÞj:

for every PAPm
n :
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Proof of the Theorem. We need to prove that

jP0ðyÞjp4 � 8mþ1n max
xA½0;1�

jPðxÞj

for every PAPm
n and yA½0; 1�: However, it follows from Corollary 7 by a simple

linear transformation that

jP0ðyÞjp2 � 2 � 8mþ1n max
xA½y;1�

jPðxÞjp4 � 8mþ1n max
xA½0;1�

jPðxÞj; yA½0; 1=2�;

and

jP0ðyÞjp2 � 2 � 8mþ1n max
xA½0;y�

jPðxÞjp4 � 8mþ1n max
xA½0;1�

jPðxÞj; yA½1=2; 1�:

This finishes the proof. &
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